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Origin of quasiperiodic dynamics in excitable media
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Analysis of the dynamic instabilities of periodic waves in a one-dimensional excitable ring medium dem-
onstrates that driven oscillations of a pulse width display different oscillatory behavior at different values of
stimulation frequency. Initial periodicity evolves to quasiperiodic dynamics when the propagation speed of a
pulse approaches its minimal value determined by the dispersion relation of a medium.

PACS number~s!: 82.40.Bj, 05.45.Pq
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Studies of complex dynamics in excitable media are
subject of significant theoretical and practical importan
@1–3#. Complex dynamics is known to be related to a bro
range of aperiodic phenomena in chemical and biolog
excitable media@4# and may provide a mechanism for ca
diac fibrillation, for example@5,6#. Experimental data@7# and
clinical observations of chaotic dynamics@8# may be inter-
pretted as a quasiperiodic~QP! transition to chaos in excit
able media, a mechanism introduced by Ruelle and Tak
@9#. Unlike a period-doubling route to chaotic behavior, t
Ruelle–Takens result predicts complex or chaotic beha
in systems having three independent characteristic freq
cies@9#. However, the underlying origin of such frequenci
which lead to QP dynamics in excitable media is unclear

In this brief report we show how QP behavior appe
from periodic perturbations of a periodic wave represented
a pulse circulating in a one-dimensional ring of an excita
medium. In this case the lengthL of the ring is equal to the
wavelength of a steady-state periodic~unperturbed! wave
train. It represents a major spatial scale which fully det
mines the system’s periodic dynamics~steady circulation!
via the dispersion relation for the medium. A single pert
bation of a steadily circulating stable pulse results in dam
oscillations of its width and velocity~eigenoscillations!. We
demonstrate quasiperiodicity for driven circulation of a pu
in a ring for the simplest increasing monotonic dispers
curve, and show that it occurs only if the eigenoscillatio
damp relatively slow. Specifically, quasiperiodicity develo
only in the presence of three independent oscillatory p
cesses: the steady-state circulation of a pulse, the~almost!
undamped oscillations of its width and velocity, and the e
ternal pacing.

We locally stimulate the ring periodically. These period
perturbations initiate three nonlinearly interacting oscillato
dynamic processes. The first process is specified by a

*Present address: Naval Research Laboratory, Center for Bio
cal Science and Engineering, Code 6900.IS, Washing
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quency of the steady-state circulation of a pulsef ss, the sec-
ond by the frequency of the pulse width eigenoscillatio
f eig, and finally the third one by the stimulation frequen
f s . We controlled the wavelengthL varying it from large
wavelengths down to its minimal valueLmin , near which the
eigenoscillations are long lived and below which a perio
wave dies@10#. We found that whenL is nearLmin , even
insignificant variations of stimulation frequencyD f s[u f s
2 f ssu, within the range determined by the inequali
D f s / f ss,1, cause the transition from periodic phase-lock
regimes reported in@7# to complex QP dynamics.

To carry out our simulations in the correct region of t
dispersion curve, we need a reaction–diffusion system
which the dispersion curve and the unperturbed periodic
namics can be described analytically. Such a model is p
vided by an exactly solvable model, namely@11#

]

]t
u~x,t !2

]2

]x2 u~x,t !52 i ~u,v,l!, ~1a!

]

]t
v~x,t !5«@zu~x,t !1v r2v~x,t !#, ~1b!

i ~u,v,l!5H lu, u,v

u21, v,u.
~1c!

Herev has the meaning of a dynamically varying excitati
threshold with the ground~resting! state valuev r . The ex-
citability of the medium is primarily controlled by constan
v r , and the recovery rate for the variablev, «. The param-
eterz characterizes the effect of theu variable onv. Sinceu
quickly approaches unity in the wave’s front, the product«z
determines the growth rate of thev wave’s leading edge
while « alone characterizes its falloff on the trailing edg
Finally, the constantl represents a local relaxation rate f
the u variable. Without loss of generality we assume 0,l
,1, and chooseu50 andu51 to be the ground~resting!
and excited states of a medium, respectively.

i-
n,
7208 ©2000 The American Physical Society



n-

ex

d
ns
-

e

e
:

r-

o

e

d
-
ng

by
fe

u
e

-
te

ic
x

n-

r-
d in
ing

n-

n-
the

ve
all

that

-

PRE 61 7209BRIEF REPORTS
A periodic solution of Eq.~1! is found analytically within
«1 , where«15e21/« is a new small parameter. The statio
ary propagating wave-train is characterized by the lengthLh
of the excited region, in whichu.v, and the lengthL f of the
unexcited region, in whichu,v ~see Fig. 1!. The analytical
solution yields the widths as explicit functionsLh(c) and
L f(c) of the wave-train propagation speedc found in @12#.
These two lengths sum to the spatial periodL of the periodic
wave-train and determine the dispersion relation for the
citable medium:L5Lh(c)1L f(c).

First, we explore the evolution of the initially perturbe
pulse in the ring and study arising free oscillatory patter
The initial conditions for Eqs.~1! are chosen as slightly per
turbed analytical periodic solutions found in@12#. The per-
turbation was introduced by cutting off the tail of the wav
i.e., taking the ring’s lengthL slightly smaller than the initial
wavelengthL init . We carried out our simulations along th
dispersion curve at a fixed perturbation quasiamplitudex
[(L init(c)2L)/L, with L init always being greater thanL
@10#. We variedx andL moving along the theoretical dispe
sion curvec5cth(L) from large wavelengths~near the soli-
tary pulse limit! to the minimum oneLmin at which the os-
cillations become unstable~the damping approaches zer!
@10#. This is similar to the instability reported in@13#. We
thus determine the wavelength region in which the forc
dynamics may show complex behavior.

Next, we consider the process generated by perio
stimulation. The variableu is periodically perturbed by set
ting its values to unity at the first seven grid points duri
one time step per pacing period~the total number of grid
points M5180!. The observed dynamics is determined
the interaction of three periodic processes with three dif
ent characteristic periods: the stimulation periodTs51/f s ,
the period of the steady-state pulse circulationTss51/f ss,
and the eigenoscillation’s periodTeig51/f eig. ~The period
Teig is measured in the numerical experiments without stim
lation.! Figure 2 illustrates the driven oscillations of th
wave head widthLh for a large ring’s lengthL550 far away
from the valueLmin520.04. In order to have eigenoscilla
tions present from the the outset, we start from a modera
perturbed initial condition determined byx50.1. PanelA
(Ts /Tss50.98) depicts an incremental transition to period
phase-locking-like oscillations which correspond to soft e
citation scenario@6#. PanelB (Ts /Tss51.04) also shows the
incremental oscillations which look similar to those of a li

FIG. 1. A snapshot of a periodic steady-state wave-train,u, v for
c50.85 atv r50.22, l50.2, z51.2, and«50.05. The values of
L f , Lh , andL5L f1Lh are marked.
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ear oscillator under periodic forcing, but additionally inco
porate alternating substructures. The behaviors illustrate
these panels are characteristic for the region of the r
lengths far away fromLmin , when the eigenoscillations ofLh
quickly damp as shown in panelC. Varying the stimulation
period does not result in significant alteration of the statio
ary oscillatory regimes for sufficiently shortTs . Further de-
crease ofTs does not change the dynamics which still tra
sitions to strictly periodic patterns. We then decreased
ring lengthL moving along the theoretical dispersion cur
and used the initial conditions corresponding to a very sm
fixed perturbation quasiamplitudex50.005 ~The parameter
values typically were«50.1, v r50.22,z51.2, l50.2, and
Lmin519.87.! When we reachedL521.27 and the damping
of the eigenoscillations became very small, we observed

FIG. 2. Driven time oscillations ofLh vs stimulation periodTs :
~a! TS /Tss50.98; ~b! TS /Tss51.04; ~c! Rapidly damped eigenoscil
lations. Parameters arel50.4, z51.2, «50.02,v r50.2, L550.0,
andx50.1.
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stimulations of the ring with different periods result in si
nificant changes in the dynamics of oscillations which b
came fairly complex, as shown in Fig. 3.

In analyzing solutions of Eqs.~1!, we assume for a spatia
discretization that uj (t)5u(xj ,t), and v j (t)5v(xj ,t),
where j 50 . . .M , and M is the number of spatial mes
points. Periodic boundary conditions are applied atj 50 and
j 5M . This results in the system of ordinary differenti
equations of order 2M12.

When computing Lyapunov exponents, it is not sufficie
to compute them from a measured time series: as show
@14#, even low dimensional systems may possess spur
maximum Lyapunov exponents. To do the computatio
properly, one needs to generate the linear variational eq
tions along a solution, and look at the average length o
small vector for a sufficiently long time along the attracto
Since the current system of Eqs.~1! corresponds to a discon
tinuous vector field, we smooth it by substituting for th
function i in Eq. ~1c! the following:

h~m,x!5
arctan~mx!

p
1

1

2
, ~2a!

i ~u,v,l!5luh~m,v2u!1~u21!h~m,u2v !, ~2b!

Equations~1a!, ~1b!, and ~2! allow one to generate a
smooth Jacobian without modifying the qualitative behav
of the original discontinuous dynamics, form sufficiently
large.

We consider a localized periodic stimulusS given by an
approximate delta function

S~ t,v,s!5e2„sin2~vt/2!/s2
…, ~3!

applied overN spatial nodal points~i.e., j 51,N!, whereN
!M . We fix the following parameters so that we are ne
the minimum length scale of the dispersion curve:M5180,
l50.2, z51.2, v r50.22, «50.1, N57. The period of the
pulse,Ts52p/v, is our control parameter. The terms corr
sponding to stimulation atN spatial points are added to th
right-hand side of Eq.~1a!.

Since the local stimulus is applied periodically, w
sample the fielduj (tn) wheretn5nTs . In this way we gen-
erate a Poincare map of the attractor, and perform the
lowing numerical experiment. We fix the periodTs and re-
move transient behavior. We then compute the next

FIG. 3. Complex time series ofLH at L521.27. The stimulation
period isTs538.0.
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iterates which lie on the attractor. The final values of t
vector field are then used as initial data for the next value
the periodTs1d, whered is small. The process is then re
peated to generate a range of attractors as a functio
stimulation period. The results are plotted in Fig. 4, whe
the solutionu100 is the component plotted.

There are three major regions of interest in Fig. 4. T
first is that for long enough periods, the response is a pe
one attractor. As period is decreased, the period one un
goes a flip bifurcation to a period two branch. Notice that t
amplitude ofu of one of the iterates is very small compare
to the other amplitude. These small amplitude period t
cycles possibly correspond to cardiac alternans@15#, which
have been conjectured to form spiral breakdown in hig
spatial dimensions@16#.

As the period of simulation is further decreased, there
another region that appears abruptly in which the period
cycle destabilizes, resulting in a QP attractor. Further
tailed computations show that this instability is indeed d
continuous. This QP region consists of both QP and perio
attractors, and does not exhibit chaos in the present m
due to the monotonic nature of the dispersion curve, as c

FIG. 5. Maximum Lyapunov exponents for periodic and qua
periodic cases. The dashed horizontal line denotes an expone
zero. The inset shows an invariant torus for quasiperiodic motio

FIG. 4. Bifurcation picture as a function of stimulation perio
The solution is a component ofu away from the location of the
stimulus. The solution is sampled every stimulus period. HereTss

532.
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jectured in@17#. For a fixed period in the quasiperiodic re
gime we show an example of the attractor atTs535.0
sampled at the stimulation is shown in Fig. 5 as an invari
torus. In Fig. 5 are plotted the results of computing the ma
mum Lyapunov exponents as a function of time for the
attractor atTs535.0 as well as the maximal exponent of t
periodic attractor at periodTs554.6. Notice that the periodic
attractor has a negative maximum exponent, while that of
QP attractor converges to zero.

We summarize by noting that:~1! The dispersion curve
y

t
i-

e

explicitly determines the three frequencies which gener
the QP attractors.~2! Near the minimum length scale of th
dispersion curve:~a! long periodic stimulation damps ou
one frequency, implying the existence of periodic attract
only; ~b! shorter stimulation periods exciting weakly damp
frequencies imply QP attractors are sustained.

This work was supported by the Office of Naval R
search, DARPA, Whitaker Foundation Grant No. 96-016
and NASA Grant No. NAG5-4989.
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