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Origin of quasiperiodic dynamics in excitable media
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Analysis of the dynamic instabilities of periodic waves in a one-dimensional excitable ring medium dem-
onstrates that driven oscillations of a pulse width display different oscillatory behavior at different values of
stimulation frequency. Initial periodicity evolves to quasiperiodic dynamics when the propagation speed of a
pulse approaches its minimal value determined by the dispersion relation of a medium.

PACS numbs(s): 82.40.Bj, 05.45.Pq

Studies of complex dynamics in excitable media are thgyuency of the steady-state circulation of a puige the sec-
subject of significant theoretical and practical importanceond by the frequency of the pulse width eigenoscillations
[1-3]. Complex dynamics is known to be related to a broadf;, and finally the third one by the stimulation frequency
range of aperiodic phenomena in chemical and biologicaf,. We controlled the wavelength varying it from large
excitable medig4] and may provide a mechanism for car- wavelengths down to its minimal valus,;,, near which the
diac fibrillation, for examplé5,6]. Experimental datf7] and  eigenoscillations are long lived and below which a periodic
clinical observations of chaotic dynamif8] may be inter- wave dies[10]. We found that wherL is nearL,,, even
pretted as a quasiperiodi@QP) transition to chaos in excit- insignificant variations of stimulation frequencyf,=|fs
able media, a mechanism introduced by Ruelle and Takens f¢, within the range determined by the inequality
[9]. Unlike a period-doubling route to chaotic behavior, theAf /fs<1, cause the transition from periodic phase-locked
Ruelle—Takens result predicts complex or chaotic behavioregimes reported ifi7] to complex QP dynamics.
in systems having three independent characteristic frequen- To carry out our simulations in the correct region of the
cies[9]. However, the underlying origin of such frequenciesdispersion curve, we need a reaction—diffusion system for
which lead to QP dynamics in excitable media is unclear. which the dispersion curve and the unperturbed periodic dy-

In this brief report we show how QP behavior appearsnamics can be described analytically. Such a model is pro-
from periodic perturbations of a periodic wave represented agided by an exactly solvable model, naméhi]

a pulse circulating in a one-dimensional ring of an excitable

medium. In this case the lengthof the ring is equal to the 9 92 _
wavelength of a steady-state periodienperturbell wave U= —au(x, ) =—i(uv,A), (13

train. It represents a major spatial scale which fully deter-
mines the system’s periodic dynami¢steady circulation

via the dispersion relation for the medium. A single pertur- J _

. Lo . : —v(X,t)=¢e[lu(x,t)tv,—v(Xt)], 1b
bation of a steadily circulating stable pulse results in damped at vy =e[futx ) +o—v(xb)] (1b)
oscillations of its width and velocityeigenoscillations We
Qemonstrate quasiperiodici'ty for drjven circulatipn qf a pu]se AU, u<v
in a ring for the simplest increasing monotonic dispersion i(uv,\)= (10
curve, and show that it occurs only if the eigenoscillations u-1, v<u.

damp relatively slow. Specifically, quasiperiodicity develops
only in the presence of three independent oscillatory proHerev has the meaning of a dynamically varying excitation
cesses: the steady-state circulation of a pulse,(@hmosy  threshold with the groundresting state valuev, . The ex-
undamped oscillations of its width and velocity, and the ex-citability of the medium is primarily controlled by constants
ternal pacing. v,, and the recovery rate for the variahle e. The param-
We locally stimulate the ring periodically. These periodic eter{ characterizes the effect of thevariable onv. Sinceu
perturbations initiate three nonlinearly interacting oscillatoryquickly approaches unity in the wave’s front, the prodegt
dynamic processes. The first process is specified by a freletermines the growth rate of the wave’'s leading edge,
while ¢ alone characterizes its falloff on the trailing edge.
Finally, the constank represents a local relaxation rate for
*Present address: Naval Research Laboratory, Center for Biologthe u variable. Without loss of generality we assum& X
cal Science and Engineering, Code 6900.1S, Washington<1, and choos@i=0 andu=1 to be the groundresting
D.C. 20375. and excited states of a medium, respectively.
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FIG. 1. A snapshot of a periodic steady-state wave-tigin,for
¢=0.85 atv,=0.22,\=0.2, {=1.2, ande=0.05. The values of
L¢, L, andL=L;+L are marked.

10.0

A periodic solution of Eq(1) is found analytically within
g1, Wheres;=e"# is a new small parameter. The station-
ary propagating wave-train is characterized by the lehgth ﬂ f
of the excited region, in which>v, and the lengtlv; of the
unexcited region, in whichi<v (see Fig. 1L The analytical
solution yields the widths as explicit functions,(c) and
L:(c) of the wave-train propagation speedound in[12].
These two lengths sum to the spatial periodf the periodic
wave-train and determine the dispersion relation for the ex-
citable mediumL =L(c)+L¢(c). (o) e e e e e
First, we explore the evolution of the initially perturbed
pulse in the ring and study arising free oscillatory patterns.
The initial conditions for Eqgs(1) are chosen as slightly per-
turbed analytical periodic solutions found [ih2]. The per- 1880
turbation was introduced by cutting off the tail of the wave,
i.e., taking the ring’s length slightly smaller than the initial
wavelengthL ;. We carried out our simulations along the 1240
dispersion curve at a fixed perturbation quasiamplitugde: L,
=(Lint(c)—L)/L, with L always being greater thah
[10]. We variedy andL moving along the theoretical disper-
sion curvec=cy(L) from large wavelengthgnear the soli-
tary pulse limi} to the minimum ond.,;, at which the os-
cillations become unstabléhe damping approaches zgro

Lh 8o

B0

1230

[10]. This is similar to the instability reported ii3]. We (C')w” = = =
thus determine the wavelength region in which the forced '
dynamics may show complex behavior. FIG. 2. Driven time oscillations df,, vs stimulation period:

Next, we consider the process generated by periodiga) T4/T.=0.98;(b) Ts/T.=1.04;(c) Rapidly damped eigenoscil-
stimulation. The variable is periodically perturbed by set- |ations. Parameters ale=0.4, /=1.2,=0.02,v,=0.2, L=50.0,
ting its values to unity at the first seven grid points duringand y=0.1.
one time step per pacing peridthe total number of grid
points M=180). The observed dynamics is determined byear oscillator under periodic forcing, but additionally incor-
the interaction of three periodic processes with three differporate alternating substructures. The behaviors illustrated in
ent characteristic periods: the stimulation peribg=1/f, these panels are characteristic for the region of the ring
the period of the steady-state pulse circulatibg= 1/f, lengths far away fronk,,;,, when the eigenoscillations &f,
and the eigenoscillation’s perio@lgg=1/f¢. (The period  quickly damp as shown in pan€l. Varying the stimulation
Teigis measured in the numerical experiments without stimuperiod does not result in significant alteration of the station-
lation) Figure 2 illustrates the driven oscillations of the ary oscillatory regimes for sufficiently shoft,. Further de-
wave head width.y, for a large ring’s length. =50 far away crease ofT¢ does not change the dynamics which still tran-
from the valuel ,;;=20.04. In order to have eigenoscilla- sitions to strictly periodic patterns. We then decreased the
tions present from the the outset, we start from a moderatelsing lengthL moving along the theoretical dispersion curve
perturbed initial condition determined by=0.1. PanelA  and used the initial conditions corresponding to a very small
(T,/T,=0.98) depicts an incremental transition to periodicfixed perturbation quasiamplitude=0.005(The parameter
phase-locking-like oscillations which correspond to soft ex-values typically weree=0.1,v,=0.22,{=1.2,A=0.2, and
citation scenari¢6]. PanelB (Ts/Ts=1.04) also shows the L,;;=19.87) When we reachetl =21.27 and the damping
incremental oscillations which look similar to those of a lin- of the eigenoscillations became very small, we observed that
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FIG. 3. Complex time series &fy; atL=21.27. The stimulation 0.3 0.6 0.9 1.2 1.5 1.8
period isT;=38.0. T_/T,,

stimulations of the ring with different periods result in sig-  FIG. 4. Bifurcation picture as a function of stimulation period.
nificant changes in the dynamics of oscillations which be-The solution is a component af away from the location of the
came fairly complex, as shown in Fig. 3. stimulus. The solution is sampled every stimulus period. Hege
In analyzing solutions of Eq$1), we assume for a spatial =32-
discretization that u;(t)=u(x;,t), and v;(t)=v(x;,1), _ o _
where j=0...M, and M is the number of spatial mesh iterates which lie on the attractor. The final values of the
points. Periodic boundary conditions are appliefiab and  vector field are then used as initial data for the next value of
j=M. This results in the system of ordinary differential the periodTs+ 6, whereéis small. The process is then re-
equations of order 121 + 2. peated to generate a range of attractors as a function of
When computing Lyapunov exponents, it is not sufficientStimulation period. The results are plotted in Fig. 4, where
to compute them from a measured time series: as shown #fi€ solutionu; oo is the component plotted.
[14], even low dimensional systems may possess spurious 1here are three major regions of interest in Fig. 4. The
maximum Lyapunov exponents. To do the Computaﬁongirst is that for long enough periods, the response is a period
properly, one needs to generate the linear variational equ&ne attractor. As period is decreased, the period one under-
tions along a solution, and look at the average length of &oes a flip bifurcation to a period two branch. Notice that the
small vector for a sufficiently long time along the attractor. @mplitude ofu of one of the iterates is very small compared
Since the current system of Eq4) corresponds to a discon- to the other amplitude. These small amplitude period two
tinuous vector field, we smooth it by substituting for the Cycles possibly correspond to cardiac alterngifs, which

functioni in Eq. (1¢) the following: have been conjectured to form spiral breakdown in higher
spatial dimensiong16].

arctaimx) 1 As the period of simulation is further decreased, there is

h(m,x)= -, (2a) another region that appears abruptly in which the period two

cycle destabilizes, resulting in a QP attractor. Further de-
i(u,o,\)=Auh(m,u—u)+(u—1)h(mu—o), (2b) tailed computations show that this instability is indeed dis-
continuous. This QP region consists of both QP and periodic
Equations(1a), (1b), and (2) allow one to generate a attractors, and does not exhibit chaos in the present model
smooth Jacobian without modifying the qualitative behaviordue to the monotonic nature of the dispersion curve, as con-
of the original discontinuous dynamics, fon sufficiently

0.60 0.25 0.50 0.75 1.00

large. 0.2 T
We consider a localized periodic stimul@sgiven by an . 1.00
approximate delta function 1.0 0.75
— A (sir(wt/2)/0?) o
S(t,l}),o') e ’ (3) 3 2.3 > o 25
applied overN spatial nodal pointgi.e., j=1,N), whereN g 0.00
Ll
.
=

<M. We fix the following parameters so that we are near 3.6 - tiey
the minimum length scale of the dispersion curive= 180,
N=0.2,=1.2,v,=0.22,6=0.1, N=7. The period of the i

pulse, Ts=2m/w, is our control parameter. The terms corre-

>X— T=35.0

sponding to stimulation dXl spatial points are added to the —O—1-54.6
right-hand side of Eq(1a). 6.2 T
Since the local stimulus is applied periodically, we 0 33 70105 140 175

Iterate

sample the fieldy;(t,) wheret,=nT;. In this way we gen-
erate a Poincare map of the attractor, and perform the fol- F|G. 5. Maximum Lyapunov exponents for periodic and quasi-

lowing numerical experiment. We fix the peridd and re-  periodic cases. The dashed horizontal line denotes an exponent of
move transient behavior. We then compute the next 20@ero. The inset shows an invariant torus for quasiperiodic motion.
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jectured in[17]. For a fixed period in the quasiperiodic re- explicitly determines the three frequencies which generate
gime we show an example of the attractor B§=35.0 the QP attractorg2) Near the minimum length scale of the
sampled at the stimulation is shown in Fig. 5 as an invariantlispersion curveia) long periodic stimulation damps out

torus. In Fig. 5 are plotted the results of computing the maxione frequency, implying the existence of periodic attractors
mum Lyapunov exponents as a function of time for the QPonly; (b) shorter stimulation periods exciting weakly damped
attractor aff ;= 35.0 as well as the maximal exponent of the frequencies imply QP attractors are sustained.

periodic attractor at periodls=54.6. Notice that the periodic

attractor has a negative maximum exponent, while that of the This work was supported by the Office of Naval Re-

QP attractor converges to zero.

search, DARPA, Whitaker Foundation Grant No. 96-0161,

We summarize by noting thatl) The dispersion curve and NASA Grant No. NAG5-4989.
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